1. The nth even number is $2 n$.

The next even number after $2 n$ is $2 n+2$
(a) Explain why.
\qquad
\qquad
(b) Write down an expression, in terms of n, for the next even number after $2 n+2$
(c) Show algebraically that the sum of any 3 consecutive even numbers is always a multiple of 6
2. Prove that $(3 n+1)^{2}-(3 n-1)^{2}$ is a multiple of 4 , for all positive integer values of n.
3. Prove, using algebra, that the sum of two consecutive whole numbers is always an odd number.

4. Prove that

$$
(2 n+3)^{2}-(2 n-3)^{2} \text { is a multiple of } 8
$$

for all positive integer values of n.
*5. Prove algebraically that the difference between the squares of any two consecutive integers is equal to the sum of these two integers.
6. Prove that $(5 n+1)^{2}-(5 n-1)^{2}$ is a multiple of 5 , for all positive integer values of n.
(3 marks)
7. If $2 n$ is always even for all positive integer values of n, prove algebraically that the sum of the squares of any two consecutive even numbers is always a multiple of 4 .
8. Prove that
$(n+1)^{2}-(n-1)^{2}+1$ is always odd for all positive integer values of n.
9. Prove algebraically that the sum of the squares of any two consecutive numbers always leaves a remainder of 1 when divided by 4 .

